Translate

THANKS

Thanks for being touch with us on Social media and online website

×
Thanks!
for visiting the electricaldon.com website.Received many applications for ITI ELECTRICIAN for job. Kindly note our team is working on it, shortly you will receive call from them.

APPLY only if you have Electrical wiremen or Electrical Supervisor Licenses its Mandatory. !

Thankyou for your Patients. !

Search This Blog

amazon 3

Pages

SI Dimensions of Physical Quantities listed by Category

 SI Dimensions of Physical Quantities listed by Category

QuantityDimensionAlternativesRoot definition and Notes
Basic SI quantities 
Length m m meter 
Mass kg kg kilogram 
Time s s second 
Current, electric A A ampere 
Temperature K K kelvin 
Quantity of substance mol mol mole 
Luminosity | Luminous intensity cd cd candle 
Pseudo-dimensional quantities: 
Plane angle 1 rad radian 
Solid angle 1 sr steradian 
Universal dimensionless quantities 
Count of events | Number of instances 1  This covers all kinds of enumerations 
Probability of an event 1  Real number in a dimensionless interval [0,1] 
Ratio of commensurable quantities 1  Q1/Q2, with Q1 and Q2 having the same dimension 
Relative variation 1  ΔQ/Q, for any quantity Q 
Logarithmic ratio logb(A/A') in any base b 1  Applicable to any ratio of commensurable quantities 
Logarithmic scale differential | Relative differential 1  d{ln(Q)} = dQ/Q, for any quantity Q 
Pseudo-dimensional quantities: 
Phase | Phase angle 1 rad φ typically in exp(i(ωt+φ)) 
Logarithmic ratio Log(P/P')/10 1 dB decibel. Uses base-10 logarithm. Applies to power P 
Logarithmic ratio Log(X/X')/20 1 dB decibel. Uses base-10 logarithm. Applies to amplitudes X 
Gain or Loss of a device 1 usually in dB [Output]/[Input], provided they are commensurable quantities 
Attenuation | Amplification (generic)  1 usually in dB [Quantity(p)]/[Quantity(p')], with p being some parameter 
Logarithmic ratio ln(A/A') 1 Np Neper. Uses natural logarithm 
Logarithmic scale probability density 1 1/Np [Probability]/[Natural-logarithmic ratio] 
Operators 
Derivative with respect to time s-1 d/dt, ∂/∂t 
Derivative with respect to a length m-1 d/dr, ∂/∂r, r = x | y | z 
Nabla ( ∇ ) | div | grad | rot | curl m-1 Any derivative-like construct with respect to a distance 
Laplace operator | Laplacianm-2 2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 
D'Alembert operator | D'Alembertian m-2 (1/c2)2/∂t2 - ∂2/∂x2 - ∂2/∂y2 - ∂2/∂z2 
Multiple derivatives with respect to time s-p dp/dtp, ∂p/∂tp; for p = 1,2,3,.. 
Multiple derivatives with respect to a length m-p dp/drp, ∂p/∂rp; for p = 1,2,3,..., r = x | y | z 
Quantities related only to time 
Time | Duration s s second 
Half life s  of a non-conservative / decaying quantity 
Settling time s typically dB/s Used to describe transient phenomena 
Relaxation time s  Used for returns to equilibria 
Activity | Frequency of events s-1 [Counts]/[Time] 
Count rate | Expectation frequency s-1 [Counts]/[Time] 
Relative growth rate s-1 [Relative variation]/[Time] 
Relative evolution rate | Log-scale evolution rate s-1 d{ln(Q)}/dt = (dQ/dt)/Q 
Settling rate s-1typically dB/s [Ratio]/[ΔTime]. Used for transient phenomena 
Relaxation rate s-1 1/[Relaxation time] 
Frequency of waves s-1Hz hertz 
Phase drift rate s-1rad.s-1[Phase angle]/[Time] 
Angular velocity / speed s-1rad.s-1[Plane angle]/[Time] 
Frequency drift rate s-2Hz.s-1[ΔFrequency]/[Time]. Applicable to waves 
Angular acceleration / deceleration s-2rad.s-2[ΔAngularVelocity]/[Time] 
Quantities related only to space 
Position vector m  in all Euclidean n-dimensional spaces 
Length | Distance m m meter 
Perimeter | Circumference | Radius m   
Thickness m  usually referred to planar structures 
Wavelength m  [Wave velocity]/[Frequency] 
Wavenumber m-1 [Number of waves]/[Distance] 
K-space vector | Reciprocal space position m-1  
Curvature radius m  of a line in plane/space or surface in space 
Curvature m-1 1/[Curvature radius] 
Convergence m-1dioptry used in optics, but not only .. 
Attenuation / amplification over a distance m-1dB/m [Attenuation]/[Distance]. Mostly in acoustic and electronics 
Extinction coefficient m-1dB/m [Ratio]/m. Used mostly for radiation 
Propagation / transmission loss m-1dB/m [Ratio]/m. Generic, usable for any quantity 
Area | Cross section m2 [Distance]*[Distance] 
Surface element | Surface area m2 [Distance]*[Distance]. Applicable to 3D bodies 
Volume element | Volume m3 [Area]*[Distance] 
Propagation through space and time 
Velocity | Speed m.s-1 [Distance]/[Time] 
Acceleration | Deceleration m.s-2 [ΔVelocity]/[ΔTime] 
Drift speed m.s-1 Steady-state speed of an object 
Surface / area growth rate m2.s-1 [ΔArea]/[Time] 
Volume growth rate m3.s-1 [ΔVolume]/[Time]. For example, of a crystal 
Volume flow m3.s-1 [Volume]/[Time]. For example, through a device 
Matter distribution and transport 
Particle density m-3 [Count]/[Volume]. Obsolete: number density 
Mass kg kg kilogram 
Mass production rate kg.s-1 [ΔMass]/[Time] 
Mass density | Specific density kg.m-3 [Mass]/[Volume] 
Mass density gradient | Specific density gradient kg.m-4 [Mass density]/[Distance] 
Specific volume m3.kg-1 [Volume]/[Mass] 
Concentration ratio by volume 1 Dimensionless [Partial volume]/[Total volume] 
Concentration ratio by mass 1 Dimensionless [Partial mass]/[Total mass]. Not by weight: obsolete) 
Mass flow (total) kg.s-1 [ΔMass]/[Time]. For example, through a device 
Diffusion coefficient m2.s-1 [Distance2]/[Time] 
Molar distribution and transport quantities: 
Particle count, molar mol-1 [Count]/[Mol]. For example, the Avogadro constant 
Molar production rate mol.s-1 [ΔQuantity]/[Time] 
Molar mass kg.mol-1 [Mass]/[Quantity] 
Molar volume m3.mol-1 [Volume]/[Quantity] 
Molar density | Density of substance m-3.mol [Quantity]/[Volume] 
Molarity | Concentration m-3.mol [Quantity]/[Volume]. Same as molar density 
Molarity gradient | Concentration gradient m-4.mol [Molarity]/[Distance] 
Molar concentration ratio 1 Dimensionless [Partial quantity]/[Total quantity] 
Molality (intended as concentration) kg-1.molmol/kg [Quantity]/[Mass]. Obsolete 
Katalytic activity mol.s-1katal [ΔQuantity]/[Time] 
Mechanics and hydrodynamics 
Force kg.m.s-2N newton. [Mass]*[Acceleration] 
Moment of motion kg.m.s-1 [Mass]*[Velocity], [Mass flow]*[Distance] 
Impulse kg.m.s-1 [ΔMoment of motion], [Force]*[ΔTime], [Mass]*[ΔVelocity] 
Moment of force | Torque kg.m2.s-2N.m [Force]*[Distance]. Like energy 
Couple kg.m2.s-2N.m 2*[Force]*[Distance] for two non-aligned opposing forces 
Pressure kg.m-1.s-2N.m-2Papascal. [Force]/[Area] 
Pressure gradient kg.m-2.s-2N.m-3Pa/m[Pressure]/[Distance] 
Energy | Lagrangian | Hamiltonian kg.m2.s-2N.m, J joule. [Force]*[Distance], [Power]*[Time] 
Specific energy m2.s-2J.kg-1[Energy]/[Mass] 
Energy density kg.m-1.s-2J.m-3[Energy]/[Volume] 
Power | Energy flux kg.m2.s-3J.s-1W watt. [ΔEnergy]/[ΔTime] 
Action kg.m2.s-1J.s [Energy]*[Time], [Moment of motion]*[Distance] 
Angular moment of inertia kg.m2 [Mass]*[Distance2] 
Angular moment of motion kg.m2.s-1J.s [Moment of motion]*[Distance] 
Circulation m2.s-1J.s.kg-1[Angular moment]/[Mass], [Velocity]*[Loop length] 
Spin 1 Dimensionless of a quantum particle 
Stress | Tension | Compression kg.m-1.s-2N.m-2Pa (pascal)[Force]/[Area]. ... same as pressure 
Compressive strength kg.m-1.s-2N.m-2, Pa[Force]/[Area]. Like pressure 
Strain (mechanical) 1 Dimensionless [ΔLength]/[Length] Relative deformation 
Friction kg.m.s-2N Tangential force between two moving surfaces 
Traction kg.m.s-2N Maximum tangential force before slipping 
Velocity, superficial m.s-1m/s In porous media; as if the space was filled only by the fluid 
Velocity, advection m.s-1m/s In porous media; actual progress along pressure gradient 
Wave function for N particles (quantum) m-3N/2tentative |ψ|2N is a dimensionless probability element.
Mechanical and hydrodynamic properties of matter 
Compressibility | Modulus of compression kg-1.m.s2Pa-1[Pressure]/([ΔVolume]/[Volume]). Inverse of bulk modulus 
Bulk modulus kg.m-1.s-2N.m-2, Pa([ΔVolume]/[Volume])/[Pressure]. Inverse of compressibility 
Young modulus kg.m-1.s-2N.m-2, Pa[Stress]/[Strain]. Like shear modulus 
Shear modulus | Modulus of rigidity kg.m-1.s-2N.m-2, Pa[Stress]/[Strain]. Same dimension aas Young modulus 
Poisson's ratio 1 Dimensionless [Transversal striction]/[Londitudinal elongation] 
Impact | Notch resistance kg.s-2J.m-2[Energy]/[Area] 
Hardness | Tensile strength kg.m-1.s-2N.m-2, Pa[Force]/[Area]. Like pressure 
Stiffness (linear) kg.s-2N.m-1[Force]/[Displacement]. ... of a structure 
Stiffness (rotational) kg.m2.s-2.rad-1N.m.rad-1[Moment of force]/[Angle]. ... of a structure 
Friction coefficient 1 Dimensionless [Tangential force]/[Normal force] 
Traction coefficient 1 Dimensionless [Traction]/[Weight] 
Self-diffusion coefficient m2.s-1 [Distance2]/[Time] 
Surface tension kg.s-2N/m [Force]/[Length]. Same as surface energy 
Surface energy kg.s-2J/m2[Energy]/[Area]. Same as surface tension 
Viscosity, dynamic kg.m-1.s-1Pa.s ([Force]/[Area])/[ΔVelocity] 
Viscosity, kinematic m2.s-1 [Dynamic viscosity]/[Density] 
Reynolds number 1 Dimensionless [Velocity]*[length]/[Kinematic viscosity] 
Critical angle of repose rad or degree Steepest angle of a slope before a slide 
Porosity, volume 1 Dimensionless [Volume of pores]/[Total volume], in porous media 
Porosity, superficial 1 Dimensionless [Void cross section]/[Total cross section], in porous media 
Permeability, hydraulic m21 darcy = 10-12 m2[Velocity]*[Viscosity]/[Pressure gradient], in porous media 
Conductivity, hydraulic m.s-1m/s Used for porous media 
Specific acoustic impedance / resistance / reactance kg.m-2.s-1Pa.s/m reyl[ΔPressure]*[Velocity], intensive property 
Specific acoustic conductance / susceptance kg-1.m2.sreyl-1Inverse of specific acoustic impedance 
Acoustic impedance / resistance / reactance kg.m-4.s-1Pa.s/m3, reyl/m2[ΔPressure]/[Volume flow rate], extensive property 
Thermodynamics 
Temperature K K kelvin 
Temperature gradient | Thermal gradient K.m-1 [ΔTemperature]/[Distance] 
Heat | Internal energy | Enthalpy kg.m2.s-2J Same as energy 
Specific heat | internal energy | enthalpy m2.s-2J.kg-1[Heat]/[Mass] 
Heat capacity kg.m2.s-2.K-1J.K-1[ΔHeat]/[ΔTemperature] 
Heat flux kg.m2.s-3J.s, W [ΔHeat]/[ΔTime]. Same as power 
Heat flux density | Irradiance kg.s-3W.m-2[Heat flux]/[Area] 
Entropy kg.m2.s-2.K-1J.K-1[ΔHeat]/[Temperature] 
Specific entropy m2.s-2.K-1J.K-1.kg-1[Entropy]/[Mass] 
Free energy | Free enthalpy kg.m2.s-2J Helmholtz | Gibbs functions, respectively 
Specific free energy | free enthalpy m2.s-2J.kg-1[Energy]/[Mass]. Also specific Helmholtz | Gibbs functions 
Molar thermodynamical quantities: 
Molar heat | internal energy | enthalpy kg.m2.s-2.mol-1J.mol-1[Heat]/[Quantity] 
Molar energy kg.m2.s-2.mol-1J.mol-1[Energy]/[Quantity] 
Molar entropy kg.m2.s-2.K-1.mol-1J.K-1.mol-1[Entropy]/[Quantity] 
Molar free energy | free enthalpy kg.m2.s-2.mol-1J.mol-1[Energy]/[Quantity]. Molar versions of the above 
Thermodynamic and thermal properties of matter 
Thermal expansion coefficient K-1 ([ΔLength]/[Length])/[Temperature] 
Heat capacity, specific m2.s-2.K-1J.K-1.kg-1[Heat capacity]/[Mass] 
Heat capacity, molar kg.m2.s-2.K-1.mol-1J.K-1.mol-1[Heat capacity]/[Quantity] 
Heat of fusion | evaporation, specific m2.s-2J.kg-1[Energy]/[Mass] 
Heat of fusion | evaporation, molar kg.m2.s-2.mol-1J.mol-1[Energy]/[Quantity] 
Heat conductivity kg.m.s-3.K-1W.m-1.K-1[Heat flux]/([Distance]*[ΔTemperature]) 
Thermal diffusivity m2.s-1 ([∂Temp]/[∂Time])/[∇2Temp].
Prandtl number 1 Dimensionless [Kinematic viscosity]/[Thermal diffusivity] 
Joule-Thomson coefficient kg-1.m.s2.KK.Pa-1[ΔTemperature]/[ΔPressure] 
Pi coefficient, molar kg.m-1.s-2.mol-1J.m-3[ΔInternalEnergy]/[ΔVolume] 
Chemical potential, molar kg.m2.s-2.mol-1J.mol-1[ΔInternalEnergy]/[ΔQuantity] 
Softening point K  Temperature at which hardness drops below a level 
Annealing point K  Temperature at which viscosity drops below 1012 Pa.s 
Strain point K  Temperature at which viscosity drops below 1013.5 Pa.s 
Flash point K  Temperature at which vapour can be kept burning 
Fire point K  Temperature at which ignited vapour keeps burning 
Thermal properties of devices 
Thermal resistance kg-1.m-2.s3KK/W [ΔT]/[Power].
Electromagnetism 
Charge, electric s.A C coulomb. [Current]*[Time] 
Charge density m-3.s.A C.m-3[Charge]/[Volume] 
Current, electric A A ampere. [Charge]/[Time] 
Current density | Current intensity m-2.A [Current]/[Area] 
Specific charge | Charge/mass ratio kg-1.s.A C.kg-1[Charge]/[Mass] 
Molar charge s.A.mol-1 C.mol-1[Charge]/[Quantity] 
Quantum charge 1 Dimensionless [Charge]/[Elementary charge quantum] 
Surface density of charge m-2.s.A C.m-2[Charge]/[Area] 
Potential, electric kg.m2.s-3.A-1W.A-1, J.C-1, C.F-1Vvolt. [Power]/[Current], [Energy]/[Charge] 
Electric dipole moment m.s.A C.m [Charge]*[Distance] 
Electric quadrupole moment m2.s.A C.m2[Electric dipole]*[Distance], [Electric charge]*[Distance2] 
Electric field strength | Electric intensity kg.m.s-3.A-1V.m-1[ΔPotential]/[Distance] 
Electric field gradient kg.s-3.A-1V.m-2[ΔEl.field strength]/[Distance] 
Electric flux density | Electric induction m-2.s.AC.m-2[Charge]/[Area] 
Electric polarization | Electric displacement m-2.s.AC.m-2[Charge]/[Area]. Same as electric flux density 
Magnetic field strength | Magnetic intensity m-1.A [Current]/[Distance] 
Magnetic flux kg.m2.s-2.A-1V.s, W.s.A-1Wb weber. [ΔPotential]*[Time], [Power]/[dCurrent/dt] 
Magnetic flux density | Magnetic induction kg.s-2.A-1Wb.m-2T tesla. [Mag.flux]/[Area] 
Magnetic vector potential kg.m.s-2.A-1m-1.s.V, m.T[Mag.flux density]*[Distance], [El.field strength]*[Time] 
Magnetization m-1.A [Magnetic moment]/[Volume]. Like magnetic field strength 
Magnetic charge (bound) m-2.A - ∇.[Magnetization] , -Divergence of magnetization 
Poynting vector kg.s-3W.m-2[El.field strength]/[Mag.field strength]. Same as irradiance 
Magnetic field gradient kg.m-1.s-2.A-1T.m-1[ΔMagnetic flux density]/[Distance] 
Magnetic dipole moment m2.AJ.T-1[Current]*[Area]. Same as magnetic moment 
Magnetic quadrupole moment m3.Am.J.T-1[Magnetic dipole]*[Distance] 
Gyromagnetic ratio kg-1.s.AHz.T-1[Mag.moment]/[Angular moment of motion] 
Magnetogyric ratio kg.s-1.A-1T.Hz-1[Angular moment of motion]/[Mag.moment] 
Relativistic four-current (Jα) m-2.A Like current density and [Charge]*[c] 
Relativistic four-potential (Aα) kg.m.s-2.A-1m-1.s.V, m.TLike magnetic vector potential and [El.potential]/[c] 
Relativistic electromagnetic field tensor (Fμν) kg.s-2.A-1T Like magnetic flux density 
Relativistic displacement four-tensor (Dμν) m-1.A Like magnetic intensity 
Electromagnetic properties of matter 
Resistivity kg.m3.s-3.A-2Ω.m [Resistance]*[Length])/[Area] 
Conductivity kg-1.m-3.s3.A2S.m-11/[Resistivity] 
Permittivity, electric kg-1.m-3.s4.A2F.m-1[El.flux density]/[El.field strength] 
Dielectric constant | Relative permittivity 1 Dimensionless [Permittivity]/[Permittivity of vacuum] 
Permeability, magnetic kg.m.s-2.A-2N.A-2, H.m-1[Mag.flux density]/[Mag.field strength] 
Reluctance, magnetic kg-1.m-1.s2.A2m.H-11/[Permeability] 
Relative permeability, magnetic 1 Dimensionless [Permeability]/[Permeability of vacuum] 
Susceptibility, magnetic 1 Dimensionless [Relative permeability] - 1 
Characteristic impedance kg.m2.s-3.A-2V.A-1, Ω, ohm √([Mag.Permeability]/[El.Permittivity]) 
Electric | Dielectric strength | rigidity kg.m.s-3.A-1V.m-1[ΔPotential]/[Distance] 
Verdet constant kg-1.m-1.s2.A1rad.m-1.T-1([Angle]/[Length])/[Magnetic flux density] 
Work function kg.m2.s-2J, eV [Energy] needed to remove an electron 
Thermoelectric power | Thermopower kg.m2.s-3.A-1.K-1V.K-1[ΔPotential]/[ΔTemperature] 
Seeback coefficient kg.m2.s-3.A-1.K-1V.K-1[ΔPotential]/[ΔTemperature] 
Thomson coefficient kg.m2.s-3.A-1.K-1W.K-1.A-1[Heat flux]/([ΔTemperature]*[Current]) 
Peltier coefficient kg.m2.s-3.A-1W.A-1, V[Heat flux]/[Current] 
Piezzoelectric coefficient kg.m.s-3.A-1V.m-1[El.field strength]/([ΔLength]/[Length]) 
Electrostriction coefficient kg-2.m-2.s6.A2m2.V-2([ΔVolume]/[Volume])/[El.field strength]2 
g-factor of a particle 1 Dimensionless [Mag.moment]/([Spin].[Bohr magneton]) 
Properties of electric/magnetic devices and circuit components 
Bandwidth s-1Hz [ΔFrequency] 
Voltage | Electromotive force (emf) kg.m2.s-3.A-1V [ΔPotential] 
Current, electric A A ampere. [Charge]/[Time] 
Magnetomotive force (mmf) A  [Current]*[Number of turns] 
Impedance, of a circuit kg.m2.s-3.A-2Ω ohm 
Admittance, of a circuit kg-1.m-2.s3.A2S siemens. 1/[Circuit impedance] 
Resistance kg.m2.s-3.A-2V.A-1Ω(ohm) [ΔPotential]/[Current] 
Conductance kg-1.m-2.s3.A2A.V-1S (siemens) 1/[Resistance] 
Capacitance kg-1.m-2.s4.A2C.V-1F farad. [Charge]/[ΔPotential] 
Reactance, capacitive kg.m2.s-3.A-2Ω (ohm) 1/(i[Angular frequency].[Capacitance]) 
Susceptance, capacitive kg-1.m-2.s3.A2S (siemens) 1/[Reactance] 
Inductance | Mutual inductance kg.m2.s-2.A-2V.s.A-1, Wb.A-1H henry. [ΔPotential]/[dCurrent/dt] or [Magnetic flux]/[Current] 
Impedance, inductive kg.m2.s-3.A-2Ω (ohm) i[Angular frequency].[Inductance] 
Admittance, inductive kg-1.m-2.s3.A2S (siemens) 1/[Inductive impedance] 
Number of turns 1  Applicable to coils, transformers, etc 
Current noise, variance nJ2 s.A2A2/Hz[Current]2/[Bandwidth]
Voltage noise, variance nV2 kg2.m4.s-5.A-2V2/Hz[Voltage]2/[Bandwidth]
Chemistry, physical chemistry, atomic and molecular physics 
Concentration | Molar density | Molarity m-3.mol [Quantity]/[Volume]. Same as Density of substance 
Molality kg-1.molmol/kg [Quantity]/[Mass] 
Katalytic activity | Molar production rate mol.s-1katal [Quantity]/[Time] 
Molar mass kg.mol-1 [Mass]/[Quantity] 
Molar charge s.A.mol-1 C.mol-1[Charge]/[Quantity] 
Molecular | ionic quantum charge 1 Dimensionless [Charge of a molecule or ion]/[Elementary charge quantum] 
Ionic strength | Ionic force m-3.mol Sum([Conc.]*[Ionic quantum charge]2)
Ion mobility kg-1.m-1.s2.Am2.s-1.V-1 [Velocity]/[Electric field strength] .
Drift speed m.s-1 Steady-state speed of ions in electric field .
Fugacity kg.m-1.s-2Pa Effective pressure in real gases 
Osmotic pressure kg.m-1.s-2Pa 
Thermodynamic force kg.m.s-2.mol-1N/mol [ΔChemical potential]/[Distance] 
Chemico-physical properties of elements 
Atomic number 1 Dimensionless Number of protons in an atomic nucleus 
Atomic weight | Relative atomic mass au atomic units Average over a typical isotopic composition 
Mass number of an isotope 1 Dimensionless Number of protons+neutrons in the isotope nuclide 
Electronegativity, Pauling χ 1 Dimensionless Relative tendency of an atom to attract electrons; χ(H)=2.20.  
Electron affinity (always molar) kg.m2.s-2.mol-1J.mol-1Energy released when binding an electron 
Chemico-physical properties of matter 
Ionization energy, molar kg.m2.s-2.mol-1J.mol-1Energy to ionize a molecule/atom 
Volume, molar m3.mol-1 [Volume]/[Quantity] 
Heat of fusion | evaporation, molar kg.m2.s-2.mol-1J.mol-1[Energy]/[Quantity] 
Chemical potential, molar kg.m2.s-2.mol-1J.mol-1[ΔInternalEnergy]/[ΔQuantity] 
Solubility, molar m-3.mol [Quantity]/[Volume] 
Reduction | Redox potential kg.m2.s-3.A-1V (volt)  
Conductivity, molar kg-1.s3.A2.mol-1S.m2.mol-1[El.conductivity]/[Concentration] 
Relaxivity, molar s-1.mol-1 [Relaxation rate]/[Concentration] 
Ebullioscopic constant kg.mol-1.KK/(mol/kg) [ΔTemperature]/[Molality] 
Cryoscopic constant kg.mol-1.KK/(mol/kg) [ΔTemperature]/[Molality] 
Compression factor of a real gas 1 Dimensionless pV/(nRT). For ideal gas equals 1; temperature dependent 
van der Waals constant: a kg.m5.s-2.mol-2Pa.m6a in (p+a/V2)(V-b)=RT, where V is molar volume
van der Waals constant: b m3.mol-1 b in (p+a/V2)(V-b)=RT, where V is molar volume
Virial coefficient: second m3.mol-1 B in pV/(nRT)=1+B(n/V)+C(n/V)2+D(n/V)3+...
Virial coefficient: third m6.mol-2 C in pV/(nRT)=1+B(n/V)+C(n/V)2+D(n/V)3+...
Virial coefficient: fourth m9.mol-3 C in pV/(nRT)=1+B(n/V)+C(n/V)2+D(n/V)3+...
Gravitation, Astronomy, Cosmology 
Gravitational field intensity | Gravity m.s-2 [Force]/[Mass], Same as acceleration 
Gravitational field potential m2.s-2 [Energy]/[Mass] 
Gravitational constant G kg-1.m3.s-2 [Force]*[Distance]2/[Mass]2. Appears in Newton's equation 
Mean motion s-1 Of a body on a Kepler orbit; sqrt(G(M1+M2)/r3) 
Mean anomaly 1 Dimensionless Of a body on a Kepler orbit; t.sqrt(G(M1+M2)/r3) 
Star magnitude (astronomy) 1 Dimensionless m-m'= -100.4(S/S'). S,S' are luminous fluxes of two stars 
Cosmological constant Λ m-2 Appears in Einstein's equation 
Cosmological expansion rate s-1km/s/Mpc [Velocity]/[Distance]. Mpc stands for Megaparsec 
Optics 
Albedo, of a surface 1 Dimensionless [Reflected elmag power]/[Incident elmag power] 
Convergence m-1dioptry dioptry 
Luminosity | Luminous intensity cd cd candle or lumen/sr 
Luminous flux | Luminous power cd.sr lm lumen. [Luminosity]*[Solid angle] 
Luminance cd.m-2 [Luminosity]/[Area] 
Luminous energy cd.sr.s lm.s [Luminous flux]*[Time]. Also known as talbot 
Illuminance cd.sr.m-2lm.m-2lx lux. [Luminous flux]/[Area] 
Luminous emittance cd.sr.m-2lm.m-2lx lux. Same as illuminance, but for sources 
Luminous efficacy cd.sr.kg-1.m-1.s3lm/W [Luminous flux]/[Power] 
Luminous efficiency | Luminous coefficient 1 Dimensionless [Luminous efficacy]/[683 lm/W] 
Irradiance kg.s-3W.m-2[Power]/[Area]. For all kinds of energy deposition 
Radiance kg.s-3.sr-1W.m-2.sr-1([Power]/[Area])/[Solid angle] 
Optical properties of matter 
Extinction coefficient m-1  
Refractive index 1 Dimensionless Light speeds ratio (in medium)/(in vacuum) 
Specific refractivity m3.kg-1 [(r2-1)/(r2+2)]/[Specific density], where r is refractive index 
Molar refractivity m3.mol-1 [(r2-1)/(r2+2)]/[Concentration] 
Dispersivity quotient m-1 [ΔRefractive index]/[ΔWavelength] 
Dispersive power 1 Dimensionless Ratio of differences of refractive indices 
Constringence | Abbé number | V-number 1 Dimensionless VD = (nD-1)/(nF-nC) 
Radiation and radioactivity 
Radioactivity | Activity s-1Bq bequerel. [Counts]/[Time] 
Irradiance kg.s-3W.m-2[Power]/[Area]. For all kinds of energy deposition 
Absorbed dose m2.s-2J.kg-1Gy gray. [Energy]/[Mass] 
Absorbed dose rate m2.s-3Gy.s-1[Absorbed dose]/[Time] 
Absorbed dose equivalent m2.s-2J.kg-1Sv sievert. [const].[Energy]/[Mass] 
Exposure kg-1.s.AC.kg-1[Charge]/[Mass]. For ionising radiations 
Radiation properties of matter 
Half life s  Of a radioisotope 
Radiation power m2.s-3W/kg [Power]/[Mass]. Heat generated by a radioisotope 
Radiation power, molar kg.m2.s-3.mol-1W/mol [Power]/[Quantity]. Heat generated by a radioisotope 
Informatics 
Information bit-1bit bit; the elementary information quantum 
Baud rate | Information flux bit.s-1Baud baud. [Information]/[Time] 
Economy and finance 
Transactions count 1 Dimensionless All kinds of counts 
Interest 1 % [ΔWealth]/[Wealth]. Usually expressed as percentage 
Wealth | Asset cur currency Currencies like $, EUR, Yuan, ... are different units 
Debt | Liability cur currency Usually intended as negative wealth 
Value | Price cur currency Prefixes: K..thousands, M..millions, B..billions 
Transaction value | Sale | Purchase cur currency Often used: mean and total values 
Time period s year,quarter,month Abbrevs: mrq.. most recent quarter, ttm.. trailing twelve months 
Fiscal year | Calendar year s year Abbrevs: lfy.. last fiscal year, yoy.. year over year 
Transactions rate | Activity s-11/year [Transactions]/[Time period] 
Transactions volume | Sales flow cur.s-1 [Value]/[Time period]. For example $/day or Eur/year 
Velocity / circulation of money s-11/year [Transactions]/[Time period] 
Interest rate s-1%/year [Interest]/[Time period] 
Return on asset / equity s-1%/year ([ΔValue]/[Value])/[Time period] 
Cash flow | Flow (generic) cur.s-1currency/year [Value]/[ΔTime]. Mathematically, time derivative 
Earnings | Income rate cur.s-1currency/year [Value]/[Time period] 
GDP Gross domestic product cur.s-1currency/year [Earnings]. Usually refered to nations/states/admin.regions 
Debt/GDP ratio syear [Debt]/[Earnings]. Independent of currency / population size 
P/E Price/Earnings ratio syear [Value]/[Earnings]. Used to assess an asset/company 
Bond duration syear In general, the duration of a fixed cash flow 


No comments:

Post a Comment

Transformer